from scipy import stats
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
np.random.seed(1245)

# Generate some random variates and calculate Box-Cox log-likelihood values
# for them for a range of ``lmbda`` values:

x = stats.loggamma.rvs(5, loc=10, size=1000)
lmbdas = np.linspace(-2, 10)
llf = np.zeros(lmbdas.shape, dtype=float)
for ii, lmbda in enumerate(lmbdas):
    llf[ii] = stats.boxcox_llf(lmbda, x)

# Also find the optimal lmbda value with `boxcox`:

x_most_normal, lmbda_optimal = stats.boxcox(x)

# Plot the log-likelihood as function of lmbda.  Add the optimal lmbda as a
# horizontal line to check that that's really the optimum:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(lmbdas, llf, 'b.-')
ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
ax.set_xlabel('lmbda parameter')
ax.set_ylabel('Box-Cox log-likelihood')

# Now add some probability plots to show that where the log-likelihood is
# maximized the data transformed with `boxcox` looks closest to normal:

locs = [3, 10, 4]  # 'lower left', 'center', 'lower right'
for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
    xt = stats.boxcox(x, lmbda=lmbda)
    (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
    ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
    ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
    ax_inset.set_xticklabels([])
    ax_inset.set_yticklabels([])
    ax_inset.set_title('$\lambda=%1.2f$' % lmbda)

plt.show()
